
金花235(金花235能吃什么
原文来源:量子位
图片来源:由无界 AI生成
针对Transformer,谷歌DeepMind一项新的发现引起了不小争议:
它的泛化能力,无法扩展到训练数据以外的内容。
目前这一结论还没有进一步得到验证,但已经惊动了一众大佬,比如Keras之父Francois Chollet表示,如果消息为真,将成为大模型界的一件大事。
谷歌Transformer是今天大模型背后的基础架构,我们所熟悉的GPT里的“T”指的就是它。
一系列大模型表现出强大的上下文学习能力,可以快速学习示例并完成新的任务。
但现在,同样来自Google的研究人员似乎指出了它的致命缺陷——超出训练数据也就是人类已有知识之外,全都无能为力。
一时间,不少从业者认为AGI再次变得遥不可及。
然而,也有网友找出论文中更多关键却被忽略的细节,比如只做了GPT-2规模的试验,训练数据也不是语言等。
随着时间的推移,更多认真研究了这篇论文的网友则指出,研究结论本身没什么问题,但人们却基于此做出过度的解读。
而论文引发网友热议之后,其中一名作者也出来做了两点澄清:
首先实验中使用的是简单Transformer,既不“大”也不是语言模型;
其次,模型是可以学习新任务的,只是无法泛化到新类型的任务
此后,又有网友在Colab中重复了这一实验,却得到了完全不同的结果。
那么,我们就先来看看这篇论文,还有提出不同结果的Samuel,到底都说了什么。
新函数几乎无法预测
实验中,作者在基于Jax的机器学习框架上训练了规模接近GPT-2、只包含解码器的Transformer。
其中包括了12层,8个注意力头,嵌入空间维度为256,参数量约为950万。
为了测试它的泛化能力,作者使用了函数作为测试对象——将线性函数和正弦函数一起作为训练数据喂模型。
这两种函数对于此时的模型来说是已知,预测的结果自然也很好,但当研究者把线性函数和正弦函数进行了凸性组合时,问题就出现了。
凸性组合并没有那么神秘,作者构建出了形如f(x)=a·kx+(1-a)sin(x)的函数,在我们看来不过是两个函数按比例简单相加。
但我们之所以会这么认为,正是因为我们的大脑拥有这方面的泛化能力,而大模型就不一样了。
别看就是简单相加,对于只见过线性和正弦函数的模型来说,这就是一种全新的函数。
对于这种新函数,Transformer给出的预测可以说是毫无准确性可言(图4c)——于是作者就认为模型在函数上没有泛化能力。
为了进一步验证自己的结论,作者调整了线性或正弦函数的权重,但即使这样Transformer的预测表现也没有显著的变化。
只有一点例外——当其中一项的权重接近1时,模型的预测结果和实际就比较吻合了。
但权重为1意味着,陌生的新函数直接变成了训练时见过的函数,这样的数据对于泛化能力来说显然没有什么意义。
进一步实验还显示,Transformer不仅对于函数的种类十分敏感,甚至同种函数也可能变成陌生条件。
研究人员发现,哪怕是单纯的正弦函数,只是改变其中的频率,模型的预测结果也会发生线束变化。
只有当频率接近训练数据中的函数时,模型才能给出比较准确的预测,当频率过高或过低时,预测结果出现了严重的偏差……
据此,作者认为,条件只要稍微有点不一样,大模型就不知道怎么做了,这不就是说明泛化能力差吗?
作者在文中也自述了研究中存在的一些局限性,如何将函数数据上的观察应用到token化的自然语言问题上。
团队也在语言模型上尝试了相似的试验但遇到一些障碍,如何适当定义任务族(相当于这里的函数种类)、凸组合等还有待解决。
免责声明:数字资产交易涉及重大风险,本资料不应作为投资决策依据,亦不应被解释为从事投资交易的建议。请确保充分了解所涉及的风险并谨慎投资。OKEx学院仅提供信息参考,不构成任何投资建议,用户一切投资行为与本站无关。
和全球数字资产投资者交流讨论
扫码加入OKEx社群
industry-frontier